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Abstract

Transition-based dependency parsers gener-
ally use heuristic decoding algorithms but can
accommodate arbitrarily rich feature represen-
tations. In this paper, we show that we can im-
prove the accuracy of such parsers by consid-
ering even richer feature sets than those em-
ployed in previous systems. In the standard
Penn Treebank setup, our novel features im-
prove attachment score form 91.4% to 92.9%,
giving the best results so far for transition-
based parsing and rivaling the best results
overall. For the Chinese Treebank, they give a
signficant improvement of the state of the art.
An open source release of our parser is freely
available.

1 Introduction

Transition-based dependency parsing (Yamada and
Matsumoto, 2003; Nivre et al., 2006b; Zhang and
Clark, 2008; Huang and Sagae, 2010) utilize a deter-
ministic shift-reduce process for making structural
predictions. Compared to graph-based dependency
parsing, it typically offers linear time complexity
and the comparative freedom to define non-local fea-
tures, as exemplified by the comparison between
MaltParser and MSTParser (Nivre et al., 2006b; Mc-
Donald et al., 2005; McDonald and Nivre, 2007).

Recent research has addressed two potential dis-
advantages of systems like MaltParser. In the
aspect of decoding, beam-search (Johansson and
Nugues, 2007; Zhang and Clark, 2008; Huang et
al., 2009) and partial dynamic-programming (Huang
and Sagae, 2010) have been applied to improve upon

greedy one-best search, and positive results were re-
ported. In the aspect of training, global structural
learning has been used to replace local learning on
each decision (Zhang and Clark, 2008; Huang et al.,
2009), although the effect of global learning has not
been separated out and studied alone.

In this short paper, we study a third aspect in a
statistical system: feature definition. Representing
the type of information a statistical system uses to
make predictions, feature templates can be one of
the most important factors determining parsing ac-
curacy. Various recent attempts have been made
to include non-local features into graph-based de-
pendency parsing (Smith and Eisner, 2008; Martins
et al., 2009; Koo and Collins, 2010). Transition-
based parsing, by contrast, can easily accommodate
arbitrarily complex representations involving non-
local features. Complex non-local features, such as
bracket matching and rhythmic patterns, are used
in transition-based constituency parsing (Zhang and
Clark, 2009; Wang et al., 2006), and most transition-
based dependency parsers incorporate some non-
local features, but current practice is nevertheless to
use a rather restricted set of features, as exemplified
by the default feature models in MaltParser (Nivre et
al., 2006a). We explore considerably richer feature
representations and show that they improve parsing
accuracy significantly.

In standard experiments using the Penn Treebank,
our parser gets an unlabeled attachment score of
92.9%, which is the best result achieved with a
transition-based parser and comparable to the state
of the art. For the Chinese Treebank, our parser gets
a score of 86.0%, the best reported result so far.
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2 The Transition-based Parsing Algorithm

In a typical transition-based parsing process, the in-
put words are put into a queue and partially built
structures are organized by a stack. A set of shift-
reduce actions are defined, which consume words
from the queue and build the output parse. Recent
research have focused on action sets that build pro-
jective dependency trees in anarc-eager (Nivre et
al., 2006b; Zhang and Clark, 2008) orarc-standard
(Yamada and Matsumoto, 2003; Huang and Sagae,
2010) process. We adopt the arc-eager system1, for
which the actions are:

• Shift, which removes the front of the queue
and pushes it onto the top of the stack;

• Reduce, which pops the top item off the stack;

• LeftArc, which pops the top item off the
stack, and adds it as a modifier to the front of
the queue;

• RightArc, which removes the front of the
queue, pushes it onto the stack and adds it as
a modifier to the top of the stack.

Further, we follow Zhang and Clark (2008) and
Huang et al. (2009) and use the generalized percep-
tron (Collins, 2002) for global learning and beam-
search for decoding. Unlike both earlier global-
learning parsers, which only perform unlabeled
parsing, we perform labeled parsing by augmenting
theLeftArc andRightArc actions with the set
of dependency labels. Hence our work is in line with
Titov and Henderson (2007) in using labeled transi-
tions with global learning. Moreover, we will see
that label information can actually improve link ac-
curacy.

3 Feature Templates

At each step during a parsing process, the
parser configuration can be represented by a tuple
〈S,N,A〉, whereS is the stack,N is the queue of
incoming words, andA is the set of dependency
arcs that have been built. Denoting the top of stack

1It is very likely that the type of features explored in this
paper would be beneficial also for the arc-standard system, al-
though the exact same feature templates would not be applicable
because of differences in the parsing order.

from single words
S0wp; S0w; S0p; N0wp; N0w; N0p;
N1wp; N1w; N1p; N2wp; N2w; N2p;

from word pairs
S0wpN0wp; S0wpN0w; S0wN0wp; S0wpN0p;
S0pN0wp; S0wN0w; S0pN0p
N0pN1p

from three words
N0pN1pN2p; S0pN0pN1p; S0hpS0pN0p;
S0pS0lpN0p; S0pS0rpN0p; S0pN0pN0lp

Table 1: Baseline feature templates.
w – word;p – POS-tag.

distance
S0wd; S0pd; N0wd; N0pd;
S0wN0wd; S0pN0pd;

valency
S0wvr; S0pvr; S0wvl; S0pvl; N0wvl; N0pvl;

unigrams
S0hw; S0hp; S0l; S0lw; S0lp; S0ll;
S0rw; S0rp; S0rl;N0lw; N0lp; N0ll;

third-order
S0h2w; S0h2p; S0hl; S0l2w; S0l2p; S0l2l;
S0r2w; S0r2p; S0r2l; N0l2w; N0l2p; N0l2l;
S0pS0lpS0l2p; S0pS0rpS0r2p;
S0pS0hpS0h2p; N0pN0lpN0l2p;

label set
S0wsr; S0psr; S0wsl; S0psl; N0wsl; N0psl;

Table 2: New feature templates.
w – word;p – POS-tag;vl, vr – valency;l –

dependency label,sl, sr – labelset.

with S0, the front items from the queue withN0,
N1, andN2, the head ofS0 (if any) with S0h, the
leftmost and rightmost modifiers ofS0 (if any) with
S0l andS0r, respectively, and the leftmost modifier
of N0 (if any) with N0l, the baseline features are
shown in Table 1. These features are mostly taken
from Zhang and Clark (2008) and Huang and Sagae
(2010), and our parser reproduces the same accura-
cies as reported by both papers. In this table,w and
p represents the word andPOS-tag, respectively. For
example,S0pN0wp represents the feature template
that takes the word andPOS-tag of N0, and com-
bines it with the word ofS0.
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In this short paper, we extend the baseline feature
templates with the following:

Distance between S0 and N0

Direction and distance between a pair of head and
modifier have been used in the standard feature
templates for maximum spanning tree parsing (Mc-
Donald et al., 2005). Distance information has
also been used in the easy-first parser of (Goldberg
and Elhadad, 2010). For a transition-based parser,
direction information is indirectly included in the
LeftArc andRightArc actions. We add the dis-
tance betweenS0 andN0 to the feature set by com-
bining it with the word andPOS-tag of S0 andN0,
as shown in Table 2.

It is worth noticing that the use of distance in-
formation in our transition-based model is different
from that in a typical graph-based parser such as
MSTParser. The distance betweenS0 andN0 will
correspond to the distance between a pair of head
and modifier when anLeftArc action is taken, for
example, but not when aShift action is taken.

Valency of S0 and N0

The number of modifiers to a given head is used
by the graph-based submodel of Zhang and Clark
(2008) and the models of Martins et al. (2009) and
Sagae and Tsujii (2007). We include similar infor-
mation in our model. In particular, we calculate the
number of left and right modifiers separately, call-
ing themleft valency andright valency, respectively.
Left and right valencies are represented byvl andvr

in Table 2, respectively. They are combined with the
word andPOS-tag ofS0 andN0 to form new feature
templates.

Again, the use of valency information in our
transition-based parser is different from the afore-
mentioned graph-based models. In our case,
valency information is put into the context of the
shift-reduce process, and used together with each
action to give a score to the local decision.

Unigram information for S0h, S0l, S0r and N0l

The head, left/rightmost modifiers ofS0 and the
leftmost modifier ofN0 have been used by most
arc-eager transition-based parsers we are aware of
through the combination of theirPOS-tag with infor-
mation fromS0 andN0. Such use is exemplified by

the feature templates “from three words” in Table 1.
We further use their word andPOS-tag information
as “unigram” features in Table 2. Moreover, we
include the dependency label information in the
unigram features, represented byl in the table. Uni-
gram label information has been used in MaltParser
(Nivre et al., 2006a; Nivre, 2006).

Third-order features of S0 and N0

Higher-order context features have been used by
graph-based dependency parsers to improve accura-
cies (Carreras, 2007; Koo and Collins, 2010). We
include information of third order dependency arcs
in our new feature templates, when available. In
Table 2,S0h2, S0l2, S0r2 andN0l2 refer to the head
of S0h, the second leftmost modifier and the second
rightmost modifier ofS0, and the second leftmost
modifier of N0, respectively. The new templates
include unigram word,POS-tag and dependency
labels of S0h2, S0l2, S0r2 and N0l2, as well as
POS-tag combinations withS0 andN0.

Set of dependency labels with S0 and N0

As a more global feature, we include the set of
unique dependency labels from the modifiers ofS0

andN0. This information is combined with the word
andPOS-tag ofS0 andN0 to make feature templates.
In Table 2,sl andsr stands for the set of labels on
the left and right of the head, respectively.

4 Experiments

Our experiments were performed using the Penn
Treebank (PTB) and Chinese Treebank (CTB) data.
We follow the standard approach to splitPTB3, using
sections 2 – 21 for training, section 22 for develop-
ment and 23 for final testing. Bracketed sentences
from PTB were transformed into dependency for-
mats using the Penn2Malt tool.2 Following Huang
and Sagae (2010), we assignPOS-tags to the training
data using ten-way jackknifing. We used our imple-
mentation of the Collins (2002) tagger (with 97.3%
accuracy on a standard Penn Treebank test) to per-
form POS-tagging. For all experiments, we set the
beam size to 64 for the parser, and report unlabeled
and labeled attachment scores (UAS, LAS) and un-
labeled exact match (UEM) for evaluation.

2http://w3.msi.vxu.se/ nivre/research/Penn2Malt.html
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feature UAS UEM

baseline 92.18% 45.76%
+distance 92.25% 46.24%
+valency 92.49% 47.65%
+unigrams 92.89% 48.47%
+third-order 93.07% 49.59%
+label set 93.14% 50.12%

Table 3: The effect of new features on the development
set for English. UAS = unlabeled attachment score; UEM
= unlabeled exact match.

UAS UEM LAS

Z&C08 transition 91.4% 41.8% —
H&S10 91.4% — —
this paper baseline 91.4% 42.5% 90.1%
this paper extended 92.9% 48.0% 91.8%
MSTParser 91.5% 42.5% —
K08 standard 92.0% — —
K&C10 model 1 93.0% — —
K&C10 model 2 92.9% — —

Table 4: Final test accuracies for English. UAS = unla-
beled attachment score; UEM = unlabeled exact match;
LAS = labeled attachment score.

4.1 Development Experiments

Table 3 shows the effect of new features on the de-
velopment test data for English. We start with the
baseline features in Table 1, and incrementally add
the distance, valency, unigram, third-order and label
set feature templates in Table 2. Each group of new
feature templates improved the accuracies over the
previous system, and the final accuracy with all new
features was93.14% in unlabeled attachment score.

4.2 Final Test Results

Table 4 shows the final test results of our
parser for English. We include in the table
results from the pure transition-based parser of
Zhang and Clark (2008) (row ‘Z&C08 transition’),
the dynamic-programming arc-standard parser of
Huang and Sagae (2010) (row ‘H&S10’), and graph-
based models including MSTParser (McDonald and
Pereira, 2006), the baseline feature parser of Koo et
al. (2008) (row ‘K08 baeline’), and the two models
of Koo and Collins (2010). Our extended parser sig-
nificantly outperformed the baseline parser, achiev-

UAS UEM LAS

Z&C08 transition 84.3% 32.8% —
H&S10 85.2% 33.7% —
this paper extended 86.0% 36.9% 84.4%

Table 5: Final test accuracies for Chinese. UAS = unla-
beled attachment score; UEM = unlabeled exact match;
LAS = labeled attachment score.

ing the highest attachment score reported for a
transition-based parser, comparable to those of the
best graph-based parsers.

Our experiments were performed on a Linux plat-
form with a 2GHz CPU. The speed of our baseline
parser was 50 sentences per second. With all new
features added, the speed dropped to 29 sentences
per second.

As an alternative to Penn2Malt, bracketed sen-
tences can also be transformed into Stanford depen-
dencies (De Marneffe et al., 2006). Our parser gave
93.5% UAS, 91.9% LAS and 52.1% UEM when
trained and evaluated on Stanfordbasic dependen-
cies, which are projective dependency trees. Cer et
al. (2010) report results on Stanfordcollapsed de-
pendencies, which allow a word to have multiple
heads and therefore cannot be produced by a reg-
ular dependency parser. Their results are relevant
although not directly comparable with ours.

4.3 Chinese Test Results

Table 5 shows the results of our final parser, the pure
transition-based parser of Zhang and Clark (2008),
and the parser of Huang and Sagae (2010) on Chi-
nese. We take the standard split ofCTB and use gold
segmentation andPOS-tags for the input. Our scores
for this test set are the best reported so far and sig-
nificantly better than the previous systems.

5 Conclusion

We have shown that enriching the feature repre-
sentation significantly improves the accuracy of our
transition-based dependency parser. The effect of
the new features appears to outweigh the effect of
combining transition-based and graph-based mod-
els, reported by Zhang and Clark (2008), as well
as the effect of using dynamic programming, as in-
Huang and Sagae (2010). This shows that feature
definition is a crucial aspect of transition-based pars-
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ing. In fact, some of the new feature templates in this
paper, such as distance and valency, are among those
which are in the graph-based submodel of Zhang
and Clark (2008), but not the transition-based sub-
model. Therefore our new features to some extent
achieved the same effect as their model combina-
tion. The new features are also hard to use in dy-
namic programming because they add considerable
complexity to the parse items.

Enriched feature representations have been stud-
ied as an important factor for improving the accu-
racies of graph-based dependency parsing also. Re-
cent research including the use of loopy belief net-
work (Smith and Eisner, 2008), integer linear pro-
gramming (Martins et al., 2009) and an improved
dynamic programming algorithm (Koo and Collins,
2010) can be seen as methods to incorporate non-
local features into a graph-based model.

An open source release of our parser, together
with trained models for English and Chinese, are
freely available.3
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